App Logo

No.1 PSC Learning App

1M+ Downloads
ABCD is a cyclic quadrilateral such that AB is a diameter of the circle circumscribing it and angle ADC = 140°. Then angle BAC is equal to∶

A38

B40

C50

D60

Answer:

C. 50

Read Explanation:

 

solution

ABCD is a cyclic quadrilateral with AB as the diameter of the circle.

∠ADC=140

∠ADC+∠ABC=180

∠ABC=180 −140 = 40

∠ACB=90 (angle subtended by a diameter at the circumference of the circle is 90)

In ΔABC we have,

∠ACB=90

∠ABC=40

∠BAC=180 − (∠ACB+∠ABC)

∠BAC=50


Related Questions:

The length of one side of a regular hexagon is 4 cm. The area (in cm²) of the hexagon is:
Y^2=16X ലാക്റ്റസ് റെക്ടത്തിന്റെ നീളം കണ്ടെത്തുക
In ∆LMN, medians MX and NY are perpendicular to each other and intersect at Z. If MX = 20 cm and NY = 30 cm, what is the area of ∆LMN (in cm² )?
How many spherical solid marbles, each having a radius of 0.3 cm, can be made from a solid sphere having a radius of 6 cm?
70 മീറ്റർ നീളവും 15 മീറ്റർ വീതിയുമുള്ള ഒരു സ്റ്റേഡിയത്തിന്റെ ചുറ്റളവ് എത്ര?