App Logo

No.1 PSC Learning App

1M+ Downloads
Alloy A contains metals x and y only in the ratio 5 : 2 and alloy B contains these metals in the ratio 3 : 4. Alloy C is prepared by mixing A and B in the ratio 4 : 5. The percentage of x in alloy C is:

A45 %

B56 %

C44 4/9 %

D55 5/9 %

Answer:

D. 55 5/9 %

Read Explanation:

Solution:

Given :

The ratio of x and y in alloy A = 5 : 2

The ratio of x and y in alloy B = 3 : 4

The ratio of A and B in alloy C = 4 : 5

To find :

Percentage of metal x in alloy C

Calculation :

⇒ Quantity of metal x in alloy A=57A =\frac{5}{7}

⇒ Quantity of metal y in alloy A=27A=\frac{2}{7}

⇒ Quantity of metal x in alloy B=37B=\frac{3}{7}

⇒ Quantity of metal y in alloy B=47B = \frac{4}{7}

A.T.Q.,

⇒ The ratio of x and y in alloy C =(57)×4+(37)×5(27)×4+(47)×5=\frac{(\frac{5}{7})\times{4}+(\frac{3}{7})\times{5}}{(\frac{2}{7})\times{4}+(\frac{4}{7})\times{5}}

⇒ The ratio of x and y in alloy C =(207)+(157)(87)+(207)=\frac{(\frac{20}{7})+(\frac{15}{7})}{(\frac{8}{7})+(\frac{20}{7})}

⇒ The ratio of x and y in alloy C=3528C = \frac{35}{28}

⇒ Quantity of x in alloy C=3563C = \frac{35}{63}

⇒ Quantity of x in alloy C=59C = \frac{5}{9}

⇒ Percentage of x in alloy C=(59)×100C = (\frac{5}{9})\times{100}

∴ The percentage of x in alloy C is  555955\frac{5}{9}%


Related Questions:

A 600 grams of sugar solution contains 50% sugar. How much sugar (in grams) must be added so that the new mixture contains 60% sugar?
രണ്ട് വർഷം മുമ്പ് റഹീമിന്റെയും കരീമിന്റെയും പ്രായം തമ്മിലുള്ള അനുപാതം 3 ∶ 2 ആയിരുന്നു, ഇപ്പോൾ അത് 7 ∶ 5 ആണ്. കരീമിന്റെ ഇപ്പോഴത്തെ പ്രായം എത്രയാണ്:
ഒരു ചതുരത്തിന്റെ നീളവും വീതിയും 5 : 3 എന്ന അംശബന്ധത്തിലാണ്. നീളം 40 മീറ്ററായാൽ വീതി എത്ര ?
If A = 2B = 4C; what is the value of A : B : C?
A man divided an amount between his sons in the ratio of their ages. The sons received Rs. 54000 and Rs. 48000. If one son is 5 years older than the other, find the age of the younger son.