App Logo

No.1 PSC Learning App

1M+ Downloads
Find the circumference (in m) of the largest circle that can be inscribed in a rectangle whose dimensions are given as 21 m and 115 m. take π=22/7

A65

B62

C66

D76

Answer:

C. 66

Read Explanation:

let's recalculate the circumference using π = 22/7:

1. Determine the Diameter and Radius (same as before):

  • Diameter = 21 m

  • Radius (r) = 21 m / 2 = 10.5 m

2. Calculate the Circumference with π = 22/7:

  • Circumference (C) = 2πr

  • C = 2 (22/7) 10.5 m

3. Simplify the Calculation:

  • C = 2 (22/7) (21/2) m (Converting 10.5 to 21/2)

  • C = (2 22 21) / (7 * 2) m

  • C = (924) / 14 m

  • C = 66 m

Therefore, using π = 22/7, the circumference of the largest circle that can be inscribed in the rectangle is 66 m.


Related Questions:

Y^2=16X ലാക്റ്റസ് റെക്ടത്തിന്റെ നീളം കണ്ടെത്തുക
70 മീറ്റർ നീളവും 15 മീറ്റർ വീതിയുമുള്ള ഒരു സ്റ്റേഡിയത്തിന്റെ ചുറ്റളവ് എത്ര?
If the area of an equilateral triangle is 25√3 cm², then the length of each side of the triangle is:
The perimeter of an equilateral triangle ABC is 10.2 cm. What is the area of the triangle ?
If the measure of the interior angle of a regular polygon is 120. then how many sides does it have?