App Logo

No.1 PSC Learning App

1M+ Downloads
find the degree of the polynomial with P(1) =-1 and P(-2) =3

A-4/3x + 1/3 =0

B4/3x + 1/3 =0

C4/3x - 1/3 =0

D-4/3x - 1/3 =0

Answer:

A. -4/3x + 1/3 =0

Read Explanation:

We have P(x) = ax +b

P(1) = -1

⇒ a + b = -1 .....(1)

P(-2) = 3

⇒ -2a + b = 3 ....(2)

from (1) and (2)

3a = -4

a = 43\frac{-4}{3}

a + b =-1

43+b=1\frac{-4}{3}+b=-1

⇒ b =1+43=13-1+\frac{4}{3} = \frac{1}{3}

So, P(x)=43x+13=0P(x) =\frac{-4}{3}x+\frac{1}{3} =0


Related Questions:

image.png

The product of the roots of the quadratic equation 65x28x=06-5x^2-8x = 0 is:

p(x)=2x2+3x+7p(x) =2x^2+3x+7,q(x)=6x2+8x9q(x)=6x^2+8x-9Find q(x)-p(x)

What is the nature of the roots of 3x² + 6x-5=0?
image.png