App Logo

No.1 PSC Learning App

1M+ Downloads
Find the number of years in which an amount invested at 8% p.a. simple interest doubles itself.

A12 years

B11 years

C12.5 years

D13 years

Answer:

C. 12.5 years

Read Explanation:

Solution:

Given:

A certain sum of money becomes double at 8% p.a simple interest.

Let us assume the time taken by a Principle ( P ) is T years

Formula Used:

Simple Interest (S.I) = (P×R×T)100\frac{(P\times{R}\times{T})}{100}

Calculation:

⇒ As given The sum doubles itself

⇒ The S.I will be = 2P – P = P

⇒ From the above-given formula

P=(P×8×T)100P = \frac{(P\times{8}\times{T})}{100}

∴  T will be 1008=12.5years\frac{100}{8} = 12.5 years


Related Questions:

If a sum of money at simple interest doubles in 12years, the rate of interest per annum is?
What will be the simple interest on Rs. 8800 for 9 months at 20/3% per annum?
6000 രൂപക്ക് 2 വർഷത്തേക്ക് 1440 രൂപ സാധാരണ പലിശ കിട്ടുമെങ്കിൽ പലിശ നിരക്ക്എത് ?
സാധാരണ പലിശ കണക്കാക്കുന്ന ബാങ്കിൽ 10 വർഷംകൊണ്ട് 1000 രൂപ 2000 രൂപയായി മാറിയാൽ പലിശ നിരക്ക് എത്ര ?
A sum, when invested at 20% simple interest per annum, amounts to ₹2160 after 3 years. What is the simple interest (in ₹) on the same sum at the same rate in 2 year?