Question:

Find the slant height of a cone whose volume is 1232 cm³ and radius of the base is 7 cm.

A25 cm

B12 cm

C32 cm

D18 cm

Answer:

A. 25 cm

Explanation:

• Volume of the cone =(1/3)πr²h = 1232 • h = 1232x3 /πr²= (1232*3*7)/(22*7*7) • Slant height l is given by the relation I = square root of (h²+r²) = square root of (24²+7²) = square root of (625) =25 cm • Slant height of the cone is 25 cm


Related Questions:

ഒരു ചതുരസ്തംഭാകൃതിയിലുള്ള ബോക്സിന്റെ നീളം അതിന്റെ വീതിയുടെ 4/3 മടങ്ങാണ്. അതിന്റെ ഉയരം അതിന്റെ നീളത്തിന്റെ പകുതിയാണ്. ബോക്സിന്റെ വ്യാപ്തം 1536 ആണെങ്കിൽ, ബോക്സിന്റെ നീളം എന്താണ്?

നീളം  3343\frac34 മീറ്ററും വീതി 9139 \frac13 മീറ്ററും ആയ ചതുരത്തിന്റെ പരപ്പളവ് എത്ര ചതുരശ്രമീറ്ററാണ് ?

ഒരു ചതുരത്തിന്റെ നീളവും വീതിയും തമ്മിലുള്ള അംശബന്ധം 5 : 3 ആണ്. നീളം 60 സെന്റിമീറ്റർ ആയാൽ വീതി എന്ത് ?

ഒരു ത്രികോണത്തിന്റെ മൂന്ന് വശങ്ങളുടെയും നീളം 5:12:13 എന്ന അനുപാതത്തിലാണ്. ഈ ത്രികോണത്തിന്റെ ഏറ്റവും വലിയ വശവും ഈ ത്രികോണത്തിന്റെ ഏറ്റവും ചെറിയ വശവും തമ്മിലുള്ള വ്യത്യാസം 1.6 സെന്റീമീറ്ററാണ്. ത്രികോണത്തിന്റെ വിസ്തീർണ്ണം കണ്ടെത്തുക ?

ഒരു സമചതുര സ്തൂപികയുടെ ചരിവുയരം 15 cm , പാദവക്ക് 12 cm, ആയാൽതൂപികയുടെ ഉയരം എത്ര ?