App Logo

No.1 PSC Learning App

1M+ Downloads
Find the smallest square number from among the given options, which is divisible by each of 8, 15 and 20.

A3600

B6400

C14400

D4900

Answer:

A. 3600

Read Explanation:

LCM of 8, 15, 20,

⇒ 8 = 2×2×22\times{2}\times{2}

⇒ 15 = 3×53\times{5}

⇒ 20 = 2×2×52\times{2}\times{5}

LCM = 2×2×2×5×32\times{2}\times{2}\times{5}\times{3}

To make perfect square then each prime factor has even powers

LCM = 2×2×2×2×5×5×3×32\times{2}\times{2}\times{2}\times{5}\times{5}\times{3}\times{3} = 3600

∴ 3600 is the smallest number from among the given options, which is divisible by each of 8, 15 and 20.


Related Questions:

450k1k എന്ന 6 അക്ക സംഖ്യയെ 3 കൊണ്ട് വിഭജിക്കാൻ കഴിയുന്ന തരത്തിൽ k-യുടെ ഏറ്റവും വലിയ മൂല്യം കണ്ടെത്തുക.
താഴെ കൊടുത്ത സംഖ്യകളിൽ 12 ന്റെ ഗുണിതം ഏത് ?
4851A53B is divisible by 9 and B is an even number, then find the sum of all the values of A.
If R019 is divisible by 11, find the value of the smallest natural number R.
Which of the following numbers is completely divisible by 9?