App Logo

No.1 PSC Learning App

1M+ Downloads

Find the sum of the first 10 terms in the series 1 × 2, 2 × 3, 3 × 4, .... :

A340

B430

C440

D540

Answer:

C. 440

Read Explanation:

n th term of the sequence= n(n + 1) Sum of first 10 terms of the sequence = 1 × 2 + ( 2 × 3) + ( 3 × 4 ) + .....+ (10×11) = 1 × (1 + 1) + 2(2+1) + 3(3+1) + ........ + 10(10 + 1) = 1² + 1 + 2² + 2 + 3² + 3 + 4² + 4 + ....... + 10² + 10 = 1² + 2² + 3² + ...... + 10² + 1 + 2 + 3 + ...... + 10 = Sum of squares of the first n numbers + sum of the first n numbers = n(n+ 1)(2n+ 1)/6 + n(n+1)/2 = 10 × 11 × 21/6 + 10 × 11/2 = 385 + 55 = 440


Related Questions:

2,6,10,....എന്ന ശ്രേണിയുടെ അറുപത്തിയെട്ടാം പദവും എഴുപത്തിരണ്ടാം പദവുംതമ്മിലുള്ള വ്യത്യാസം എത്രയാണ് ?

How many two digit numbers are divisible by 5?

If the sum of an arithmetic sequence is 476, the last term is 20, and the number of terms is 17, what is the first term?

How many two digit numbers are divisible by 3?

1 + 2 + 3 + 4 + ... + 50 =