App Logo

No.1 PSC Learning App

1M+ Downloads
f(x)=2x³-15x²+36x+1 എന്ന ഏകദത്തിന്ടെ [1,5] എന്ന ഇടവേളയിലുള്ള കേവല ഉന്നത വില ഏത് ?

A24

B29

C65

D56

Answer:

D. 56

Read Explanation:

f(x)=2x³-15x²+36x+1 f'(x) = 6x² -30x +36 = 6(x² -5x +6) = 0 => 6(x-3)(x-2) =0 ; x=2,3 x=1,2,3,5 x=1 ; f(1) = 2-15+36+1 = 24 x=2; f(2)= 2x2³ -15x2² +36x2 +1 =29 x=3 ; f(3) = 2x3³ -15x3² + 36x3 +1 = 28 x=5; f(5) = 3x5³ -15x5² + 36x5 +1 =56 -----> കേവല ഉന്നത വില


Related Questions:

f(x,y)=x²y+5y³ ആയാൽ ∂f/∂x =
z= x⁴sin(xy³) ആയാൽ ∂z/∂y കണ്ടുപിടിക്കുക.
f(x) = x² , x∈ℝഎന്ന ഏകദത്തിന്ടെ നിമ്‌ന വില കണ്ടുപിടിക്കുക.
f(x)= x³-6x²+9x+15 എന്ന ഏകദത്തിന്ടെ പ്രാദേശിക ഉന്നത വില ബിന്ദു ഏത്?
ഒരു സമചതുര മാട്രിക്സ് A ഹെർമിഷ്യൻ ആകണമെങ്കിൽ