App Logo

No.1 PSC Learning App

1M+ Downloads
If 4θ is an acute angle, and cot 4θ = tan (θ - 5°) , then what is the value of θ?

A24°

B45°

C21°

D19°

Answer:

D. 19°

Read Explanation:

Solution: Given: 4θ is an acute angle, And cot 4θ = tan (θ - 5°). Formula used: tan (90° - θ) = cot θ Calculation: cot 4θ = tan (θ -5°) ⇒ tan (90° - 4θ) = tan (θ -5°) ⇒ 90° - 4θ = θ -5° ⇒ 90° + 5° = θ + 4θ ⇒ 95° = 5θ ⇒ θ = 19° ∴ the value of θ is 19°.


Related Questions:

If xsin30°cos60° = sin45°cos45°, then the value of x is:

Find the Value ofcos30sin30sin60+cos60\frac{\cos 30^\circ - \sin 30^\circ}{\sin 60^\circ + \cos 60^\circ}

IOf tanθ=2021tan\theta=\frac{20}{21}, then the Value of SinθCosθSinθ+Cosθ\frac{Sin{\theta}-Cos{\theta}}{Sin{\theta}+Cos{\theta}}

If sinx=1237sinx=\frac{12}{37} , then what is the value of tan x?

The value of sin252+2+sin2384cos2435+4cos247\frac{{{{\sin }^2}{}52^\circ + 2 + {{\sin }^2}{{ }}38^\circ }}{{4{}{{\cos }^2}43^\circ - 5 + 4{{\cos }^2}{{}}47^\circ }}