App Logo

No.1 PSC Learning App

1M+ Downloads
If cot(2θ + 25°) = tan(θ + 20°), then find cot3θ + sec3θ.

A1

B√2

C1 + √2

D2

Answer:

C. 1 + √2

Read Explanation:

cot(2θ + 25°) = tan(θ + 20°) cot(2θ + 25°) = cot(90° -(θ + 20°) 2θ + 25° = 90° - (θ + 20°) 3θ = 45° θ = 15° cot3θ + sec3θ = cot45° + sec45° = 1 + √2


Related Questions:

Find the area of the parallelogram with sides AB = 6, AC = 3, ∠ BAC = 30

1000114769.jpg
If cot A = tan(2A - 45°), A is an acute angle then tan A is equal to:

Find the area of the triangle; AB = 5, BC = 8 and ∠CAB = 60

1000114764.jpg

Find the area of the triangle where AB= 4, BC = 6, ∠CAB = 120

1000114764.jpg
image.png