App Logo

No.1 PSC Learning App

1M+ Downloads
If cotθ = 4/3, the find the value of 5sinθ + 4cosθ – 3.

A5/6

B14/5

C16/5

D4/5

Answer:

C. 16/5

Read Explanation:

Solution:

Given:

cotθ = 4/3

Concept used:

Using Pythagorean Theorem:

P2 + B2 = H2

Calculation:

cotθ = B/P = 4/3

Let B and P be 4x and 3x respectively.

(3x)2 + (4x)2 = H2

⇒ 9x2 + 16x2 = H2

⇒ 25x2 = H2

⇒ H = 5x

5sinθ + 4cosθ – 3

⇒ 5 × (P/H) + 4 × (B/H) – 3

⇒ 5 × (3x/5x) + 4 × (4x/5x) – 3

⇒ 3 + 16/5 – 3

⇒ 16/5

∴ The value is 16/5.


Related Questions:

Find the area of the parallelogram with sides AB = 6, AC = 3, ∠ BAC = 30

1000114769.jpg

If tanθ + cotθ = 2 and θ is acute, then the value of tan100θ +cot100θ is equal to:

image.png

Find the Value ofcos30sin30sin60+cos60\frac{\cos 30^\circ - \sin 30^\circ}{\sin 60^\circ + \cos 60^\circ}

Cos1o.cos2o.cos3o.......................cos100o is equal to