App Logo

No.1 PSC Learning App

1M+ Downloads
In a circular race of 4225 m, X and Y start from the same point and at the same time at speeds of 54 km/h and 63 km/h. When will they meet again for the first time on the track when they are running in the opposite direction?

A140 seconds

B150 seconds

C130 seconds

D120 seconds

Answer:

C. 130 seconds

Read Explanation:

Solution: Given: X and Y start from the same point and at the same time at speeds of 54 km/h and 63 km/h. Distance = 4225 m Formula used: Distance = relative speed × time Calculations: The relative speed of both in the opposite direction = S2 + S1 = 54 + 63 =117 km/h = 117 * (5/18) = 65/2 m/s. So, Time is taken by them to meet for the first time on the track while running in opposite direction = Length of track / relative speed in opposite direction = 4225/(65/2) = 130 seconds Hence, The Required time is 130 seconds.


Related Questions:

A man crosses 600m long bridge in 5 minutes. Find his speed.
A thief escapes in a car driving at 60 km/h towards a city 400 km away. Only after 30 minutes, the police start to chase at 80 km/h. What distance will the police have covered when the thief is caught?
A bus starts from P at 10 am with a speed of 25 km/h and another starts from there on same day at 3 pm in the same direction with a speed of 35 km/h. Find the whole distance from P both the bus will meet.
A certain distance was covered by a car at a speed of 60 km per hour and comes back at the speed of 36 km per hour . What is the average speed of the car ?
A and B are two cities. A man travels from A to B at 35 km/ hr and returns at the rate of 15 km/hr. Find his average speed for the whole journey?