App Logo

No.1 PSC Learning App

1M+ Downloads
In ΔABC, right angled at B, BC = 15 cm and AB = 8 cm. A circle is inscribed in ΔABC. The radius of the circle is:

A2 cm

B4 cm

C1 cm

D3 cm

Answer:

D. 3 cm

Read Explanation:

image.png

In ΔABC, ∠B = 90°

⇒ AC2 = AB2 + BC2

⇒ AC = √(64 + 225) = √289= 17 cm

Now area of ΔABC = 12×AB×BC\frac{1}{2}\times{AB}\times{BC}

=12×8×15=\frac{1}{2}\times{8}\times{15} = 60 cm2

Let the radius of circle is r and centre is I.

Then area of (ΔAIB + ΔAIC + ΔBIC) = 60

⇒ [12×AB×r+12×r×AC+12×r×BC\frac{1}{2}\times{AB}\times{r}+\frac{1}{2}\times{r}\times{AC}+\frac{1}{2}\times{r}\times{BC}] = 60

12(8×r+17×r+15×r)\frac{1}{2}(8\times{r}+17\times{r}+15\times{r}) = 60

⇒ 40r = 120

∴ r = 3 cm


Related Questions:

The perimeter of an isosceles triangle is 91 cm. If one of the equal sides measures 28 cm, then what is the value of the other non-equal side?
The ratio of sides of a triangle is 3:4:5 and area of the triangle is 72 square unit. Then the area of an equilateral triangle whose perimeter is same as that of the previous triangle is
The perimeter of two squares are 40 cm and 32 cm. The perimeter of a third square whose area is the difference of the area of the two squares is
ഒരു സമചതുരത്തിന്റെ വികർണ്ണം 12 സെ. മീ. ആകുന്നു. അതിന്റെ പരപ്പളവ് (വിസ്തീർണ്ണം) എത്ര ?
ഒരു ക്ലാസ്സ് മുറിയുടെ നീളം 7 മീറ്ററും വീതി 5 മീറ്ററും ആയാൽ ചുറ്റളവ് എത്ര?