App Logo

No.1 PSC Learning App

1M+ Downloads
Komal invested a sum of ₹5000 at 20% per annum compound interest, componded annually. If she received an amount of ₹7200 after n years, the value of n is:

A2

B1.4

C2.5

D3

Answer:

A. 2

Read Explanation:

Here's how to solve this compound interest problem:

1. Understand the Compound Interest Formula:

  • A=P(1+R/100)nA = P (1 + R/100)^n

    • A = Amount after n years

    • P = Principal (initial sum of money)

    • R = Rate of interest per annum

    • n = Number of years

2. Set up the equation:

  • A = ₹7200

  • P = ₹5000

  • R = 20%

  • n = ? (what we need to find)

  • Substitute the values into the formula:

    • 7200=5000(1+20/100)n7200 = 5000 (1 + 20/100)^n

3. Solve for n:

  • Divide both sides by 5000:

    • 7200/5000=(1+1/5)n7200 / 5000 = (1 + 1/5)^n

    • 1.44=(6/5)n1.44 = (6/5)^n

    • 1.44=(1.2)n1.44 = (1.2)^n

4. Find the value of n by trial and error or by using logarithms (simpler trial and error in this case):

  • (1.2)1=1.2(1.2)^1 = 1.2

  • (1.2)2=1.44(1.2)^2 = 1.44

5. Conclusion:

  • Therefore, n = 2

The value of n is 2.


Related Questions:

If the simple interest on a sum of money for 2 years at 5% per annum is Rs. 50, what is the compound interest on the same sum at the same rate and for the same time?
At what percent per annum will Rs 3,000 amount to Rs. 3,993 in 3 years if the interest rate is compounded annually ?
Find the difference between the simple interest and compound interest, compounded annually, on an amount of ₹35,000 at 12% for 3 years.
On what sum (in ₹) will the compound interest at 2% p.a. for 2 years compounded annually be ₹9,696?
A sum becomes Rs. 4500 after 2 years and Rs. 6750 after 4 years when invested on compound interest. Find the sum.