App Logo

No.1 PSC Learning App

1M+ Downloads

f (a + b + c) = 12, and (a2 + b2 + c2) = 50, find the value of (a3 + b3 + c3 - 3abc)

A36

B24

C42

D48

Answer:

A. 36

Read Explanation:

Solution:

Given : 

(a + b + c) = 12, (a2 + b2 + c2) = 50

Formula Used : 

(a + b + c)2 = a2 + b2 + c2 + 2(ab + bc +ac)

(a3 + b3 + c3 - 3abc) = (a2 + b2 + c2 - ab - bc - ca)(a + b + c)

Calculation : 

⇒ 144 = 50 + 2(ab + bc +ac)

⇒ (ab + bc +ac) = 942=47\frac{94}{2} = 47

Now,

⇒ (a3 + b3 + c3 - 3abc)

⇒ (a2 + b2 + c2 - ab - bc - ca)(a + b + c) = (50 - 47)(12)

⇒ 3×12=363\times{12} = 36

∴ The correct answer is 36.


Related Questions:

P(x) ഒരു ഒന്നാം കൃതി ബഹുപദമാണ് , ഇവിടെ P(0) = 3 എന്നും P(1) = 0 എന്നും നൽകിയിരിക്കുന്നു. എന്നാൽ P(x) എന്താണ്?

The value of 5.35×5.35×5.35+3.65×3.65×3.6553.5×53.5+36.5×36.553.5×36.5\frac{5.35\times{5.35}\times{5.35}+3.65\times{3.65}\times{3.65}}{53.5\times{53.5}+36.5\times{36.5}-53.5\times{36.5}} is:

ഒരു സംഖ്യയുടെ ഇരട്ടിയും പകുതിയും കാൽഭാഗവും ഒന്നും ചേർന്നാൽ 100 കിട്ടും എങ്കിൽ സംഖ്യയേത് ?
X # Y = XY + x - Y ആണ് എങ്കിൽ (6#5)× (3#2) എത്ര?

If (10a3 + 4b3) : (11a3 - 15b3) = 7 : 5, then (3a + 5b) : (9a - 2b) =?