Find the reminder when x3−bx2+6x−bx^3-bx^2+6x-bx3−bx2+6x−bis divided by x−bx-bx−b Ab2+4b^2 + 4b2+4B5bC2b - 3D3b + 6Answer: B. 5b Read Explanation: when a polynomial p(x) is divided by (x - a) for some number a , the reminder r = p(a)When p(a) = 0 then (x -a) is a factor of p(x)p(x)=x3−bx2+6x−bp(x)=x^3-bx^2+6x-bp(x)=x3−bx2+6x−bx−b=0 ⟹ x=bx-b=0\implies{x=b}x−b=0⟹x=bp(b)=b3−b×b2+6b−bp(b)=b^3-b\times{b^2}+6b-bp(b)=b3−b×b2+6b−b=b3−b3+6b−b=b^3-b^3+6b-b=b3−b3+6b−b=5b=5b=5b Read more in App