If 2x + y = 6 and xy = 4, then find the value of 8x3 + y3 is: A16B72C48D64Answer: B. 72 Read Explanation: Solution:Given:2x + y = 6xy = 4Formula:(x + y)2 = x2 + y2 + 2xyx3 + y3 = (x + y) (x2 + y2 - xy)Calculation:2x + y = 6xy = 4⇒ (2x + y)2 = 4x2 + y2 + 4xy⇒ 62 = 4x2 + y2 + 4 ×\times× 4⇒ 4x2 + y2 = 36 - 16⇒ 4x2 + y2 = 20Now,(2x)3 + y3 = (2x + y) (4x2 + y2 - 2xy)⇒ 8x3 + y3 = 6 (20 - 2 ×\times× 4)⇒ 8x3 + y3 = 6 ×\times× (20 - 8)⇒ 8x3 + y3 = 6 ×\times× 12∴ 8x3 + y3 = 72Hence option (B) is correct answer. Read more in App