App Logo

No.1 PSC Learning App

1M+ Downloads

If a + b = 10 and 37\frac{3}{7} of ab = 9, then the value of a3 + b3 is:

A350

B370

C270

D360

Answer:

B. 370

Read Explanation:

Solution:

Given:

a + b = 10 

37\frac{3}{7} of ab = 9

Formula:

a3 + b3 = (a + b) [(a + b)2 - 3ab]

Calculation:

37\frac{3}{7} of ab = 9

⇒ ab = 9×(73)9\times(\frac{7}{3})

⇒ ab = 21

a3 + b3 = (a + b) [(a + b)2 - 3ab]

⇒ a3 + b3 = 10 ×\times [102 - 3 ×\times 21]

⇒ a3 + b3 = 10 ×\times [100 - 63]

⇒ a3 + b3 = 10 ×\times 37 = 370.


Related Questions:

If the sum and product of two numbers are respectively 40 and 375, then find the numbers

If a + b + c = 6, a2+b2+c2=30a^2 + b^2 + c^2 = 30 and a3+b3+c3=165,a^3 + b^3 + c^3 = 165, then the value of 4abc is:

a+b = 8, ab= 12 ആയാൽ (a - b)² എത്ര?
5x², -7x², 13x², 11x², -5x² എന്നിവയുടെ ആകെത്തുക കണ്ടെത്തുക

If x=31x =\sqrt{3} - 1 and y=3+1y =\sqrt{3}+1 then (x4y4)(x+y)2\frac{(x^4-y^4)}{(x+y)^2} is equal to ?