App Logo

No.1 PSC Learning App

1M+ Downloads

If a and b are two positive real numbers such that a + b = 20 and ab = 4, then the value of a3 + b3 is:

A7760

B240

C8000

D8240

Answer:

A. 7760

Read Explanation:

Solution:

Given:

a and b are two positive real numbers such that a + b = 20 and ab = 4. We have to find the value of a3 + b3

Formula Used:

a3 + b3 = (a + b)3 – 3ab(a + b)

Calculation:

a3 + b3 = (a + b)3 – 3ab(a + b)

⇒ a3 + b3 = (20)3 – 3×4×203\times{4}\times{20}       [∵ Given a + b = 20 and ab = 4]

⇒ a3 + b3 = 20 ×\times (202 – 12)

⇒ a3 + b3 = 20 ×\times (400 – 12)

⇒ a3 + b3 = 20 ×\times 388

⇒ a3 + b3 = 7760

∴ Value of a3 + b3 is 7760


Related Questions:

15/ P = 3 ആയാൽ P എത്ര ?
തുറന്ന ചോദ്യങ്ങളുടെ പ്രത്യേകത അല്ലാത്തത് ഏത് ?
a² + b² = 34, ab= 15 ആയാൽ a + b എത്ര?

Find the factors of the expression 3x2 – 5x – 8.

If a + b = 8 and a + a2 b + b + ab2 = 128 then the positive value of a3 + b3 is: