App Logo

No.1 PSC Learning App

1M+ Downloads

If a thirteen - digit number 507x13219256y is divisible by 72, then the maximum value of 5x+3y\sqrt{5x+3y} will be.

A6

B8

C46\sqrt{46}

D7

Answer:

D. 7

Read Explanation:

Solution:

Given:

507x13219256y

Concept used:

Divisibility rule of 9 = Sum of all digits is divisible by 9

Divisibility rule of 8 = If the last three digits of a number are divisible by 8, then the number is completely divisible by 8

.

Calculation:

507x13219256y

56y

⇒ y = 0 or y = 8     -----(by divisibility rule of 8)

⇒ 560 or 568 is divisible by 8

So y = 0 or 8

507x13219256y

If, y = 0

⇒ 5 + 0 + 7 + x + 1 + 3 + 2 + 1 + 9 + 2 + 5 + 6 + 0

⇒ 41 + x

⇒ 41 + 4 = 45 is divisible by 9

So x = 4

or y = 8

⇒ 5 + 0 + 7 + x + 1 + 3 + 2 + 1 + 9 + 2 + 5 + 6 + 8

⇒ 49 + x 

⇒ 49 + 5 = 54 is divisible by 9

According to the question maximum value of x and y is 5 and 8

√{5x+3y}

⇒ √(5 × 5 + 3 × 8) 

⇒ √49

⇒ 7

⇒ 7

∴ Required answer is 7.


Related Questions:

If the number x4738 is divisible by 9, what is the face value of x?
Find the least possible number which when divided by 36, 49, 54 or 70 leaves remainders of 19, 32, 37 and 53, respectively.
Which of the following numbers will have an even number of factors?
For what value of 'K' is the number 6745K2 divisible by 9?
ഒരു ഏഴാക്കാമ നമ്പർ 7x634y2 88-ന്റെ ഭാഗഭാഗമായിരിക്കുകയാണെങ്കിൽ, y-ന്റെ ഏറ്റവും വലിയ മൂല്യം എത്രയായിരുന്നാൽ, x-ന്റെ മൂല്യത്തോടുള്ള വ്യത്യാസം എത്ര?