App Logo

No.1 PSC Learning App

1M+ Downloads

If a+b=73a+b=\frac{7}{3} and a2+b2=319,a^2+b^2=\frac{31}{9}, find27(a3+b3)27(a^3+b^3)

A154

B156

C152

D164

Answer:

A. 154

Read Explanation:

Solution:

Given:

a+b=73a + b =\frac{7}{3}

a2+b2=319a^2+b^2=\frac{31}{9}

Formula used:

(a + b)2 = a2 + b2 + 2ab

a3 + b3 = (a + b)( a2 + b2 – ab)

Calculation:

According to the question,

a+b=73a + b = \frac{7}{3}

Squaring both sides,

(a+b)2=(73)2(a+b)^2=(\frac{7}{3})^2

a2+b2+2ab=499a^2+b^2+2ab=\frac{49}{9}

319+2ab=499\frac{31}{9} + 2ab = \frac{49}{9}

2ab=4993192ab = \frac{49}{9}-\frac{31}{9}

2ab=1892ab = \frac{18}{9}

⇒ 2ab = 2

⇒ ab = 1

According to the formula,

⇒ a3 + b3 = (a + b)( a2 + b2 – ab)

Multiply 27 on both sides,

⇒ 27(a3 + b3) = 27(a + b)( a2 + b2 – ab)

⇒ 27(a3 + b3) = 27(73)(3191)27(\frac{7}{3})(\frac{31}{9}-1)

⇒ 27(a3 + b3) = 27(73)(229)27(\frac{7}{3})(\frac{22}{9})

⇒ 27(a3 + b3) = 22×722\times{7}

⇒ 27(a3 + b3) = 154

∴ The value of 27(a3 + b3) is 154.


Related Questions:

In the expansion of (2x+y)3(2xy)3(2x + y )^3-(2x - y)^3, the coefficient of x2yx^2y is:

Find the factors of the expression 3x2 – 5x – 8.

If x=31x =\sqrt{3} - 1 and y=3+1y =\sqrt{3}+1 then (x4y4)(x+y)2\frac{(x^4-y^4)}{(x+y)^2} is equal to ?

രണ്ട് സംഖ്യകളിൽ ആദ്യത്തേത് രണ്ടാമത്തേതിന്റെ അഞ്ചിരട്ടിയാണ് . സംഖ്യകളുടെ തുക 96 ആയാൽ ചെറിയ സംഖ്യ ഏത്?