App Logo

No.1 PSC Learning App

1M+ Downloads

If ab=95\frac{a}{b}=\frac{9}{5}, then what is the value of (2a+b)÷(ab)?(2a + b)\div{(a-b)}?

A194\frac{19}{4}

B235\frac{23}{5}

C234\frac{23}{4}

DCannot be determined

Answer:

234\frac{23}{4}

Read Explanation:

Given:

ab=95\frac{a}{b}=\frac{9}{5}

Calculation:

a=9b5a=\frac{9b}{5}

(2a+b)÷(ab)(2a+b)\div{(a-b)}

2×9b5+b9b5b⇒\frac{2\times{\frac{9b}{5}+b}}{\frac{9b}{5}-b}

18b+5b59b5b5⇒\frac{\frac{18b+5b}{5}}{\frac{9b-5b}{5}}

23b4b=234⇒\frac{23b}{4b}=\frac{23}{4}

∴ The value of (2a + b) ÷(ab)\div{(a-b) }is 234\frac{23}{4}


Related Questions:

15.05 + 22.015 + 326.150 = ?

(1.2)2+(1.5)210=\frac{(1.2)^2+(1.5)^2}{10}=

Simplify the expression:

(0.08×1.1×0.05×0.9)(0.08\times{1.1}\times{0.05}\times{0.9})

53.6 എന്ന സംഖ്യ 72.29 നേക്കാൾ എത്ര കുറവാണ് ?
What should be subtracted from 107.03 to get 96.47?