App Logo

No.1 PSC Learning App

1M+ Downloads

If θ\theta is an acute angle, find the denominator A, when (cosecθcotθ)2=1cotθA(cosec\theta-cot\theta)^2=\frac{1-cot\theta}{A}

Acosecθ1cosec\theta-1

B1+sinθ1+sin\theta

Ccotθcot\theta

D1+cosθ1+cos\theta

Answer:

1+cosθ1+cos\theta

Read Explanation:

(cosecθcotθ)2=1cosθA(cosec\theta-cot\theta)^2=\frac{1-cos\theta}{A}

(cosecθcotθ)2=(1sinθcosθsinθ)2(cosec\theta-cot\theta)^2=(\frac{1}{sin\theta}-\frac{cos\theta}{sin\theta})^2

=(1cosθsinθ)2=(\frac{1-cos\theta}{sin\theta})^2

=(1cosθ)2sin2θ=\frac{(1-cos\theta)^2}{sin^2\theta}

=(1cosθ)2(1cos2θ)=\frac{(1-cos\theta)^2}{(1-cos^2\theta)}

=(1cosθ)(1cosθ)((1cosθ)(1+cosθ)=\frac{(1-cos\theta)(1-cos\theta)}{((1-cos\theta)(1+cos\theta)}

=(1cosθ)(1+cosθ)=\frac{(1-cos\theta)}{(1+cos\theta)}

which is equal to (1cosθ)A\frac{(1-cos\theta)}{A}


Related Questions:

If a + b = 11 and ab = 15, then a2+b2a^2 + b^2 is equal to:

ഒരു സംഖ്യയുടെ 4 മടങ്ങ് ആ സംഖ്യയെക്കാൾ 2 കുറവായ സംഖ്യയുടെ 5 മടങ്ങിനേക്കാൾ ഒന്ന് കൂടുതലാണ് . എങ്കിൽ ആദ്യത്തെ സംഖ്യ
The difference between a number and one-third of that number is 228. What is 20% of that number?
When each side of a square was reduced by 2 metres, the area became 49 square metres. What was the length of a side of the original square?

If x - 2y = 3 and xy = 5, find the value of x24y2x^2-4y^2