App Logo

No.1 PSC Learning App

1M+ Downloads

The base of a triangle is equal to the perimeter of a square whose diagonal is 929\sqrt{2}cm, and its height is equal to the side of a square whose area is 144 cm2. The area of the triangle (in cm2) is:

A216

B288

C72

D144

Answer:

A. 216

Read Explanation:

Given:

Diagonal of a square = 9√2 cm

Area of a square = 144 cm2

Formula used:

Area of a triangle = 1/2 × base × height

Perimeter of a square = 4a

Area of a square = a2

Here, a = side of a square

Calculation:

We know that diagonal of a square = a√2 

a√2 = 9√2

⇒ a = 9

Perimeter of the square = 4 × 9 = 36 cm = base of the triangle

Area of the square = 144 cm2

⇒ a2 = 144 cm2

⇒ a = 12 cm = height of the triangle 

Area of the triangle = 1/2 × 36 × 12

⇒ 18 × 12 = 216

∴ Area of the triangle is 216


Related Questions:

ഒരു വൃത്തത്തിൽ അന്തർലേഖനം ചെയ്ത സമചതുരത്തിന്റെ ഒരു വശം 2cm ആയാൽ വൃത്തത്തിന്റെ പരപ്പളവ്?
ചുറ്റളവ് 30 സെ.മീ ആയ ചതുരാകൃതിയിലുള്ള ഒരു കാർഡിന്റെ നീളത്തിന്റെ 2 മടങ്ങ് വീതിയുടെ 3 മടങ്ങിനോട് തുല്യമാണ്. അതിന്റെ വീതി എത്ര?
The perimeter of a rectangle having area equal to 144cm and sides in the ratio 4:9 is.
The area of sector of a circle of radius 36 cm is 72π sqcm. The length of the corresponding arc of the sector is?
The perimeter of two squares are 40 cm and 32 cm. The perimeter of a third square whose area is the difference of the area of the two squares is