The greatest among6100^6\sqrt{100}6100and312^3\sqrt{12}312and3\sqrt33 is: A6100^6\sqrt{100}6100B312^3\sqrt{12}312C3\sqrt33DCannot be determinedAnswer: 312^3\sqrt{12}312 Read Explanation: 6100,312,3^6\sqrt{100},^3\sqrt{12},\sqrt36100,312,3(100)1/6,((12)1/3,(3)1/2(100)^{1/6},((12)^{1/3},(3)^{1/2}(100)1/6,((12)1/3,(3)1/2Take the lcm of 6,3,2 = 12(100)12/6,(12)12/3,(3)12/2(100)^{12/6},(12)^{12/3},(3)^{12/2}(100)12/6,(12)12/3,(3)12/21002,124,36100^2, 12^4, 3^61002,124,3610000,20736,72910000, 20736, 72910000,20736,729 Read more in App