App Logo

No.1 PSC Learning App

1M+ Downloads

The lengths of one side of a rhombus and one of the two diagonals are 6 cm each. Find the area of the rhombus (in cm2cm^2).

A27327√3

B1818

C939√3

D18318√3

Answer:

18318√3

Read Explanation:

Diagonals of a Rhombus are perpendicular bisector

image.png

Let ABCD be a rhombus and AC = 6 cm with midpoint O and Side AB = 6 cm

So, in ΔAOB,

⇒ AO2 + OB2 = AB2

⇒ (3)2 + OB2 = 62

⇒ 9 + OB2 = 36

⇒ OB2 = 27

⇒ OB = 3√3 cm

⇒ BD = 2 ×\times OB = 6√3 cm

⇒ Area of Rhombus = 12×\frac{1}{2}\times(Product of diagonal of Rhombus) =12[d1×d2=\frac{1}{2}[d1\times{d2}]

12×(6×63)\frac{1}{2}\times{(6\times{6\sqrt{3}})} = 838\sqrt{3} cm2


Related Questions:

ഒരു കോൺ 45° ആയ ഒരു മട്ടത്രികോണത്തിൻറെ ലംബവശത്തിൻ്റെ നീളം 8 cm ആയാൽ അതിൻ്റെ കർണ്ണത്തിന്റെ നീളം എത്ര? *
The area of a rectangular field is 460 square metres. If the length is 15% more than the breadth, what is the breadth of rectangular field?
A street of width 10 metres surrounds from outside a rectangular garden whose measurement is 200 m × 180 m. The area of the path (in square metres) is

The total surface area of a solid hemisphere is 108π108\pi cm2. The volume of the hemisphere is

The three sides of a triangle are 7 cm, 9 cm and 8 cm. What is the area of the triangle?