App Logo

No.1 PSC Learning App

1M+ Downloads

The value of sin238° – cos252° is:

A√2

B1

C0

D1/√2

Answer:

C. 0

Read Explanation:

Solution:

Given:

sin238° – cos252° 

Concept Used:

sin2θ + cos2θ = 1

sin(90° – θ ) = cosθ 

Calculation:

sin238° – cos252° = sin238° – sin2(90° – 52°)

⇒ sin238° – sin238°

⇒ 0

⇒ sin238° – cos252° = 0

∴ sin238°  cos252° = 0


Related Questions:

If CosA=35CosA=\frac{3}{5}, Find tanA?

Find the area of the parallelogram with sides AB = 6, AC = 3, ∠ BAC = 30

1000114769.jpg

Conert Radian to Degree :

7π4\frac{7\pi}{4}

If secθ=43=\frac{4}{3} , what is the value of tan2 θ + tan4 θ?

Find the value of

Sin0o×sin1o×sin2o×sin30...............Sin890isSin0^o\times{sin1^o}\times{sin2^o}\times{sin3^0}...............Sin89^0 is