App Logo

No.1 PSC Learning App

1M+ Downloads

What is the number of rounds that a wheel of diameter 811m\frac{8}{11}m will make in traversing 10 km?

A4375

B2375

C1000

D4000

Answer:

A. 4375

Read Explanation:

Solution:

Distance=Circumference×No.ofRevolutionDistance=Circumference\times{No.of Revolution}

Distance = 10 km

Diameter=811mDiameter =\frac{8}{11}m

Radius=8112Radius=\frac{\frac{8}{11}}{2}

Radius,r=411Radius,r=\frac{4}{11}

Circumference of Wheel = 2πr2\pi{r}

=2×227×411= 2\times{\frac{22}{7}}\times{\frac{4}{11}}

=167=\frac{16}{7}

16

10km=167×No.ofRevolution10km=\frac{16}{7}\times{No.of Revolution}

No.ofRevolution=716×10000No.of Revolution=\frac{7}{16}\times{10000}

=4375=4375


Related Questions:

If the numerical value of the perimeter of an equilateral triangle is 3\sqrt{3} times the area of it, then the length of each side of the triangle is

If the external angle of a regular polygon is 18°, then the number of diagonals in this polygon is:
The sum of the lengths of the edges of a cube is equal to half the perimeter of a square. If the numerical value of the volume of the cube is equal to one-sixth of the numerical value of the area of the square, then the length of one side of the square is:
ഒരു ത്രികോണത്തിൻ്റെ പാദം 5 സെൻറീമീറ്ററും ഉന്നതി 10 സെ ൻറീമീറ്ററും ആയാൽ അതിൻ്റെ വിസ്തീർണം?
8x10x12 സെ.മീ. അളവുള്ള ഒരു ചതുരക്കട്ടയിൽ നിന്ന് 2 സെ.മീ. വശമുള്ള എത്ര ക്യൂബുകൾ ഉണ്ടാക്കാം?