App Logo

No.1 PSC Learning App

1M+ Downloads
(tan57° + cot37°)/ (tan33° + cot53° ) =?

Asin53° + cos33°

Btan53°× tan57°

Csin53° × sin57°

Dcos57° × cos53°

Answer:

B. tan53°× tan57°

Read Explanation:

Solution: Given: (tan57° + cot37°)/ (tan33° + cot53°) We know cot(A) = tan(90-A)​ So, [tan 33° = cot 57° and cot37° = tan 53° ] ⇒ (tan57° + tan 53°) / (cot 57° + cot 53°) ⇒ (tan57° + tan 53°) / (1/tan 57° + 1/tan 53°) ⇒ (tan57° + tan53°) / {(tan53° + tan57°)/tan53°× tan57°} ⇒ tan53° × tan57°


Related Questions:

Find the distance between top and bottom side of the parallelogram ABCD with side AC = 8, angle BAC = 60°

1000114769.jpg
image.png
image.png

Find the area of the parallelogram with sides AB = 6, AC = 4, ∠ BAC = 600

1000114769.jpg

If sinx=1237sinx=\frac{12}{37} , then what is the value of tan x?