App Logo

No.1 PSC Learning App

1M+ Downloads
The area of a triangle is 96 cm2 and the ratio of its sides is 6 ∶ 8 ∶ 10. What is the perimeter of the triangle?

A48 cm

B56 cm

C64 cm

D44 cm

Answer:

A. 48 cm

Read Explanation:

Solution:

Given:

The area of a triangle is 96 cm2 and the ratio of its sides is 6 ∶ 8 ∶ 10.

Concept used:

Area of a triangle =S(SA)(SB)(SC)=\sqrt {S (S - A) (S - B) (S - C)} (S = Semi-perimeter = (A + B + C)/2, where A, B, C are the measure of the sides of the triangle)

Calculation:

Let the sides of the triangle be 6k, 8k, and 10k respectively.

Perimeter of the triangle = (6k + 8k + 10k) = 24k

Semi-perimeter =24k2=12k= \frac{24k}{2} = 12k

​According to the concept,

12k(12k6k)(12k8k)(12k10k)=96\sqrt {12k (12k - 6k) (12k - 8k) (12k - 10k) } = 96

12k×6k×4k×2k=96\sqrt {12k \times 6k \times 4k \times 2k} = 96

144×4×k4=96\sqrt {144 \times 4 \times k^4} = 96

⇒ 24k2 = 96

⇒ k2 = 96/24

⇒ k2 = 4

⇒ k = 2

⇒ 24k = 48

∴ The perimeter of the triangle is 48 cm.

 Alternate Method

The ratio of sides of the triangle is 6 ∶ 8 ∶ 10, [ as we know 6, 8, 10 are Pythagorean triplets]

Let the sides of the triangle be 6k, 8k, and 10k respectively.

So, the triangle is a right-angle triangle, area = 1/2 × base × height  

⇒ 1/2 × 6k × 8k = 96 

⇒ 2k = 4 

⇒ k = 2

So, the perimeter of the triangle is ⇒ (6k + 8k + 10k) = 24k = 24 × 2 = 48 cm



Related Questions:

ഒരു ക്യൂബിന്റെ ഓരോ വശത്തിന്റെയും നീളം ഇരട്ടിച്ചാൽ വ്യാപ്തം എത്ര മടങ്ങാകും?

What is the volume of a cube (in cubic cm) whose diagonal measures 43cm?4 \sqrt{3} cm?

Two right circular cylinders of equal volume have their heights in the ratio 1 : 2. The ratio of their radii is :
Volume of a sphere is 24 c.c. What is the volume of a sphere having half its radius?
ഒരു ചതുരത്തിന്റെ നീളം 40 സെ.മീ. വീതി 30 സെ.മീ. ഈ ചതുരത്തിന്റെ നാലു മൂലയിൽനിന്നും 3 സെ.മീ. വശമുള്ള ഓരോ സമചതുരങ്ങൾ മുറിച്ചു മാറ്റിയാൽ ബാക്കിയുള്ള ഭാഗത്തിന്റെ വിസ്തീർണ്ണമെന്ത്?