App Logo

No.1 PSC Learning App

1M+ Downloads
The diagonal of the square is 8√2 cm. Find the diagonal of another square whose area is triple that of the first square.

A858\sqrt 5

B838\sqrt 3

C828\sqrt 2

D868\sqrt 6

Answer:

868\sqrt 6

Read Explanation:

Solution: Concept Used: Diagonal of square = √2 a Calculations: Diagonal of square = √2 a So, √2 a = 8√2 ⇒ a = 8 ⇒ a² = 64 cm² So, the area if another square = 3(64) = 192 So, it's diagonal= √2 a = √2 × √192 = 8√6 cm Hence, The Required value is 8√6 cm


Related Questions:

The Volume of hemisphere is 155232 cm3.What is the radius of the hemisphere?

If the ratio of the angles of a triangle is 2 : 4 : 3, then what is the sum of the smallest angle of the triangle and the largest angle of the triangle?
ഒരു ദീർഘചതുരത്തിന്റെ നീളവും വീതിയും 3:2 എന്ന അനുപാതത്തിലാണ്. ദീർഘചതുരത്തിന്റെ വശങ്ങൾ 1 മീറ്റർ നീട്ടിയിട്ടുണ്ടെങ്കിൽ, നീളവും വീതിയും തമ്മിലുള്ള അനുപാതം 10:7 ആയി മാറുന്നു. യഥാർത്ഥ ദീർഘചതുരത്തിന്റെ വിസ്തീർണ്ണം ചതുരശ്ര മീറ്ററിൽ കണ്ടെത്തുക.
The sides of a rectangular plotare in the ratio 5:4 and its area is equal to 500 sq.m. The perimeter of the plot is :
Two perpendicular cross roads of equal width run through the middle of a rectangular field of length 80 m and breadth 60 m. If the area of the cross roads is 675 m², find the width of the roads.