App Logo

No.1 PSC Learning App

1M+ Downloads
Two trains are moving in the same direction at 65 km/hr and 45 km/hr. respectively. The faster train crosses a man in the slower train in 18 seconds. What is the length of the faster train?

A120 m

B130 m

C105 m

D100 m

Answer:

D. 100 m

Read Explanation:

Solution: Given: Speed of the first train = 65 km/hr Speed of the second train = 45 km/hr The faster train crossed a man who is sitting on the slower train in = 18 seconds Formula: If the speed of the two trains be x km/hr and y km/hr respectively if x > y. Relative speed, if directions are = (x + y) km/hr Relative speed, if same directions = (x - y) km/hr Speed = Distance/Time 1 km/hr = 5/18 m/s Calculation: Relative speed of both trains, if both are running in same direction = (65 - 45) = 20km/hr Let length of faster train be x m, According to the question 20 × (5/18) = x/18 ⇒ x = 20 × (5/18) × 18 ⇒ x = 100 m ∴ Length of the faster train is 100 m.


Related Questions:

What is the time taken by a train running at 54 km/hr to cross a man standing on a platform, the length of the train being 180 m?

Amita travels from her house at 3123\frac{1}{2} km/h and reaches her school 6 minutes late. The next day she travels at 4124\frac{1}{2} km/h and reaches her school 10 minutes early. What is the distance between her house and the school?

Two stations are 120 km apart on a straight line. A train starts from station A at 8 a.m. and moves towards station B at 20 km/h, and another train starts from station B at 9 a.m. and travels towards station A at a speed of 30 km/h. At what time will they meet?
ഒരു വസ്തുവിൻ്റെ വേഗതയെ സംബന്ധിച്ചു താഴെ പറയുന്നതിൽ ഏത് സമവാക്യമാണ് ശെരിയല്ലാത്തത് ?
54 km/hr വേഗത്തിൽ സഞ്ചരിക്കുന്ന 140 മീ നീളമുള്ള ട്രെയിൻ 160 മീ നീളമുള്ള പാലം കടന്നു പോകാൻ എത്ര സമയം എടുക്കും ?