App Logo

No.1 PSC Learning App

1M+ Downloads
What is the greatest number of six digits, which when divided by each of 16, 24, 72 and 84, leaves the remainder 15?

A999981

B999951

C999963

D999915

Answer:

B. 999951

Read Explanation:

L.C.M ( 16,24,72 ,84) = 1008 dividing 999999/1008 = 63 (remainder) 999999 - 63 = 999936 This number 999936 is completely divisible by 16,24,72 and 84 15 is the remainder on dividing by them required number = 999936 + 15 = 999951


Related Questions:

രണ്ട് സംഖ്യകളുടെ ല.സാ.ഗു. 2079,ഉ. സാ. ഘ. 27 അതിൽ ഒരു സംഖ്യ 189 ആയാൽമറ്റേ സംഖ്യ ഏത് ?
6, 8, 9 എന്നീ സംഖ്യകൾ കൊണ്ട് ഹരിക്കാവുന്ന ഏറ്റവും ചെറിയ സംഖ്യ ?
Ratio between LCM and HCF of numbers 28 and 42
The LCM of x and y is 441 and their HCF is 7. If x = 49 then find y.
Find the greatest number that exactly divides 15,30 and 40.