App Logo

No.1 PSC Learning App

1M+ Downloads
x² + y² - 4x + 6y + 4 = 0 എന്ന സമവാക്യം ഉള്ള വൃത്തത്തിന്റെ കേന്ദ്രം എവിടെയാണ്?

A(4, -3)

B(2, -3)

C(2, 3)

D(0, 1)

Answer:

B. (2, -3)

Read Explanation:

(h, k) ആധാര ബിന്ദു ആയ വൃത്തം (x, y) എന്ന ബിന്ദുവിലൂടെ കടന്നു പോകുന്നു എങ്കിൽ വൃത്തത്തിന്റെ സമവാക്യം = (x - h)² + (y - k)² = r² x² + y² -2hx - 2yk + h² + k² = r² കേന്ദ്രം = (x ന്റെ ഗുണകം/2 , y യുടെ ഗുണകം/2) x² + y² - 4x + 6y + 4 = 0 കേന്ദ്രം =(4/2 , -6/2) = (2,-3) If the circle with base (h, k) passes through the point (x, y) then equation of the circle = (x - h)² + (y - k)² = r² x² + y² -2hx - 2yk + h² + k² = r² Center = (coefficient of x/2 , coefficient of y/2) x² + y² - 4x + 6y + 4 = 0 Center = (4/2 , -6/2) = (2, -3)


Related Questions:

The radii of two circles are 5cm and 12cm. The area of a third circle is equal to the sum of the area of the two circles. The radius of the third circle is :

O is the centre of the circle, and AB is a chord. P is a point on AB. PA=3 centimeters, PB-8 centimeters, OP= 5 centimeters what is the radius of the circle?

WhatsApp Image 2024-11-29 at 17.13.34.jpeg
Find the perimeter of the circle whose radius is 7 cm
14 സെ.മി. ആരമുള്ള ഒരു വൃത്തത്തിന്റെ വിസ്‌തീർണം എന്ത്?

In the figure, O and P are the centres of two circles. The measure of <ACM is:

WhatsApp Image 2024-12-03 at 16.03.50.jpeg