Question:

Find the center of the circle whose equation is x² + y² - 4x + 6y + 4 = 0 ?

A(4, -3)

B(2, -3)

C(2, 3)

D(0, 1)

Answer:

B. (2, -3)

Explanation:

If the circle with base (h, k) passes through the point (x, y) then equation of the circle = (x - h)² + (y - k)² = r² x² + y² -2hx - 2yk + h² + k² = r² Center = (coefficient of x/2 , coefficient of y/2) x² + y² - 4x + 6y + 4 = 0 Center = (4/2 , -6/2) = (2, -3)


Related Questions:

ഒരു വൃത്തത്തിലെ ആരo 9 സെ.മീ. ആയാൽ അതിലെ ഏറ്റവും നീളം കൂടിയ ഞാണിന്റെ നീളം എത്ര ?

If the center of the circle passes through the point (6,8), what is the radius of the circle?

If a circle centered at the origin passes through the point (3,4), what is the radius of the circle?

What is the radius of the circle such that (x - 3)² + (y + 4 )² = 100 ?

28 സെ. മീ. ആരമുള്ള ഒരു വൃത്തത്തിന്റെ പരിധി എത്ര ?