App Logo

No.1 PSC Learning App

1M+ Downloads
Find the value of tan 8° tan 22° cot 60° tan 68° tan 82°

A3\sqrt{3}

B1

C2/3\frac{2}{/\sqrt{3}}

D13\frac{1}{\sqrt{3}}

Answer:

13\frac{1}{\sqrt{3}}

Read Explanation:

Solution: CONCEPT: Here we need to recall the formulae of trigonometric Identities. FORMULAE USED: tan (90° – A) = cot A cot A = 1/tan A CALCULATION: tan 8° tan 22° cot 60° tan 68° tan 82° Considering the given statement Tan (90° – 82°) tan(90° – 68°) cot 60° tan 68° tan 82° ⇒ cot 82° cot 68° cot 60° tan 68° tan 82° ⇒ cot 60° = 1/√3 ∴ tan 8° tan 22° cot 60° tan 68° tan 82° = 1/√3


Related Questions:

Find the area of the triangle; AB = 5, BC = 8 and ∠CAB = 60

1000114764.jpg

IOf tanθ=2021tan\theta=\frac{20}{21}, then the Value of SinθCosθSinθ+Cosθ\frac{Sin{\theta}-Cos{\theta}}{Sin{\theta}+Cos{\theta}}

If cos A + cos B + cos C = 3, then what is the value of sin A + sin B + sin C?
Express sin θ in terms of cot θ, where θ is an acute angle.
(tan57° + cot37°)/ (tan33° + cot53° ) =?