App Logo

No.1 PSC Learning App

1M+ Downloads
In a triangle, if the longest side has length 15 cm, one of the another side has length 12 cm and its perimeter is 34 cm, then the area of the triangle in cm2 is:

A101710 \sqrt{17}

B5175 \sqrt{17}

C5155 \sqrt{15}

D$10 \sqrt{15}$

Answer:

101710 \sqrt{17}

Read Explanation:

Solution:

Given Data:

Side a (longest side) = 15 cm

Side b = 12 cm

Perimeter of triangle = 34 cm

Concept:

Perimeter of triangle = a + b + c and

Heron's formula for the area of triangle =[s(sa)(sb)(sc)]=\rm\sqrt{[s(s - a)(s - b)(s - c)]}

where s is the semi-perimeter.

Calculation:

Side c = Perimeter - a - b

⇒ 34 - 15 - 12 = 7 cm

Semi-perimeter (s) = Perimeter / 2 = 34 / 2 = 17 cm

Area =[17(1715)(1712)(177)]=\sqrt{[17(17 - 15)(17 - 12)(17 - 7)]}

⇒ Area=1017cm2=10\sqrt{17} cm^2

Hence, the area of the triangle is approximately 1017cm210\sqrt{17} cm^2


Related Questions:

If the perimeter of a square and an equilateral triangle are equal, then find which of the following option is correct?
The ratio of sides of a triangle is 3:4:5 and area of the triangle is 72 square unit. Then the area of an equilateral triangle whose perimeter is same as that of the previous triangle is
6 സെന്റിമീറ്റർ ഉയരമുള്ള സോളിഡ് വൃത്തസ്തംഭത്തിന്റെ വ്യാപ്തം 231 cm^3 ആണ്. വൃത്തസ്തംഭത്തിന്റെ ആരം എത്രയാണ്?
Area of triangle cannot be measured in the unit of:
ഒരു വൃത്തത്തിന്റെ ആരം 12 സെ.മി. ആയാൽ, വിസ്തീർണമെന്ത് ?