App Logo

No.1 PSC Learning App

1M+ Downloads

A=x1x+1A=\frac{x-1}{x+1}, then the value of A1AA-\frac{1}{A} is:

A4(2x1)x21\frac{-4(2x-1)}{x^2-1}

Bx214(2x1){x^2-1}{-4(2x-1)}

Cx214(2x+1){x^2-1}{-4(2x+1)}

D4xx21{-4x}{x^2-1}

Answer:

4xx21{-4x}{x^2-1}

Read Explanation:

Given:

A=x1x+1A=\frac{x-1}{x+1}

Formula used:

(a+b)2=a2+2ab+b2(a+b)^2=a^2+2ab+b^2

(a2b2)=(ab)(a+b)(a^2-b^2)=(a-b)(a+b)

Calculation:

A1AA-\frac{1}{A}

Put the value of A=x1x+1A=\frac{x-1}{x+1} in the question

(x1)(x+1)(x+1)(x1)\frac{(x-1)}{(x+1)}-\frac{(x+1)}{(x-1)}

(x1)×(x+1)(x+1)×(x+1)x21\frac{(x-1)\times{(x+1)}-(x+1)\times{(x+1)}}{x^2-1}

 4xx21\frac{-4x}{x^2-1}

∴ Correct answer is  4xx21\frac{-4x}{x^2-1}

Short trick:

Put the value of x = 2 

So,

A=13A = \frac{1}{3}

According to the question,

A1AA-\frac{1}{A}

133\frac{1}{3}-3

83\frac{-8}{3}

Then check the option you get the answer 

Put the value in option (D)

4xx21\frac{-4x}{x^2-1}

(4×2)(41)\frac{(-4\times{2})}{(4-1)}

83\frac{-8}{3}

Correct answer is  4xx21\frac{-4x}{x^2-1}



Related Questions:

If 2x + y = 6 and xy = 4, then find the value of 8x3 + y3 is:

If x + y + z = 19, xyz = 216 and xy + yz + zx = 114, then the value of x3+y3+z3+xyz\sqrt{x^3+y^3+z^3+xyz} is.

100 രൂപ ചില്ലറ ആക്കിയപ്പോൾ 20 ന്റെയും 10 ന്റെയും നോട്ടുകളാണ് കിട്ടിയത്. ആകെ 7 നോട്ടുകൾ എങ്കിൽ 20 എത്ര നോട്ടുകൾ ഉണ്ട് ?
If b² - 4ac < 0 then the roots of the quadratic equation are _____
The difference between a number and one-third of that number is 228. What is 20% of that number?