App Logo

No.1 PSC Learning App

1M+ Downloads

Evaluate sin54cos36+sec46cosec44\frac{\sin 54^{\circ}}{\cos 36^{\circ}}+\frac{\sec 46^{\circ}}{\operatorname{cosec} 44^{\circ}}

A0

B-1

C2

D1

Answer:

C. 2

Read Explanation:

Solution:

Formula used:

sin ( 90 - θ ) = cosθθ , sec ( 90 - θ ) = cosecθ 

Calculation:

sin 54/cos 36 + sec 46/cosec 44 

As, we know that sin( 90 - θ ) = cosθ  , sec (90 - θ ) = cosecθ 

⇒ sin ( 90 - 36 ) /cos36 + sec( 90 - 44 ) /cosec44

⇒ cos36/cos36 + cosec44/cosec44 = 1 + 1 = 2  

Hence, the required value is 2 .


Related Questions:

If sec3x = cosec(3x - 45°), where 3x is an acute angle, then x is equal to:
circumradius of an equilateral triangle of sides 6 cm
A triangle is to be drawn with one side 9cm and an angle on it is 30 what should be the minimum length of the side opposiste to this angle?
If 4θ is an acute angle, and cot 4θ = tan (θ - 5°) , then what is the value of θ?

Find the value of

Sin0o×sin1o×sin2o×sin30...............Sin890isSin0^o\times{sin1^o}\times{sin2^o}\times{sin3^0}...............Sin89^0 is