App Logo

No.1 PSC Learning App

1M+ Downloads

If (4y4y)=11(4y-\frac{4}{y})=11 , find the value of (y2+1y2)(y^2+\frac{1}{y^2}) .

A$7\frac{9}{16}$

B$5\frac{9}{16}$

C$9\frac{11}{16}$

D$9\frac{9}{16}$

Answer:

D. $9\frac{9}{16}$

Read Explanation:

Solution:

Given:

4y4y=114y-\frac{4}{y} = 11

Formula used:

(a + b)2  = a2 + 2ab + b2

Calculation:

4y4y=114y-\frac{4}{y} = 11

Dividing the whole equation by 4.

y2+1y2=(114)2+2y^2+\frac{1}{y^2}=(\frac{11}{4})^2+2

12116+2\frac{121}{16} + 2

15316=9(916)\frac{153}{16} = 9(\frac{9}{16})

The answer is 9(916)9(\frac{9}{16})


Related Questions:

If xy = 16 and x2 + y2 = 32, then the value of (x + y) is:

Solve the inequality : -3x < 15

If, (x+1x)=4(x+\frac{1}{x})=4, then the value of x4+1x4x^4+\frac{1}{x^4} is:

If 2x + y = 6 and xy = 4, then find the value of 8x3 + y3 is:

If a + b + c = 6, a2+b2+c2=30a^2 + b^2 + c^2 = 30 and a3+b3+c3=165,a^3 + b^3 + c^3 = 165, then the value of 4abc is: