App Logo

No.1 PSC Learning App

1M+ Downloads

If a - b = 4 and a3 - b3 = 88, then find the value of a2 - b2.

A868\sqrt{6}

B666\sqrt{6}

C727\sqrt{2}

D$9\sqrt{6}$

Answer:

868\sqrt{6}

Read Explanation:

Given:

a - b = 4 and a3 - b3 = 88

Formula: 

(a3 - b3) = (a - b) (a2 + b2 + ab)

(a3 - b3) = (a - b) [(a - b)2 + 3ab]

(a + b)2 = a2 + b2 + 2ab

(a + b)(a - b) = a2 - b2

Calculation:

According to the formula

88 = 4 ×\times (42 + 3ab)

⇒ 22 = 16 + 3ab

⇒ 3ab = 22 - 16

⇒ ab = 63\frac{6}{3}

⇒ ab = 2

(a - b)2 = a2 + b2 - 2ab

⇒ 42 = a2 + b2 - 2 ×\times 2

⇒ a2 + b2 = 16 + 4 

⇒ a2 + b2 = 20

(a + b)2 = 20 + 2 ×\times 2

⇒ a + b = 24=26\sqrt{24} = 2\sqrt{6}

Then (a + b)(a - b) = 26×42\sqrt{6}\times{4}

868\sqrt{6} 

∴ (a2 - b2) = 868\sqrt{6}


Related Questions:

Find the factors of the expression 3x2 – 5x – 8.

The sum of two numbers is 59 and their product is 840. Find the sum of their squares.

If xy = 16 and x2 + y2 = 32, then the value of (x + y) is:

-125,965,-367______എന്നീ നാലു സംഖ്യകളുടെ തുക പൂജ്യം ആയാൽ നാലാമത്തെ സംഖ്യ ഏത്?

If x + y + z = 19, xyz = 216 and xy + yz + zx = 114, then the value of x3+y3+z3+xyz\sqrt{x^3+y^3+z^3+xyz} is.