App Logo

No.1 PSC Learning App

1M+ Downloads

If x + y + z = 19, xyz = 216 and xy + yz + zx = 114, then the value of x3+y3+z3+xyz\sqrt{x^3+y^3+z^3+xyz} is.

A32

B28

C30

D35

Answer:

D. 35

Read Explanation:

Solution:

Given: 

x + y + z = 19

xyz = 216

xy + yz + xz = 114

Formula Used:

1.) (x + y + z)2 = x2 + y2 + z2 + 2(xy + yz + xz)

2.) x3 + y3 + z3 = 3(xyz) + (x + y +z ){(x2 + y2 + z2 – (xy + yz + xz)}

Calculations:

(x + y + z)= x2 + y2 + z2 + 2(xy + yz + xz)

⇒ (19)2 = x2 + y2 + z2 + 2(114)

⇒ x2 + y2 + z2 = (19)2 – 2(114)

⇒ x2 + y2 + z= 361 – 228 

⇒ x2 + y2 + z= 133

Now,

x3 + y3 + z3 = 3(xyz) + (x + y +z ){(x2 + y2 + z2 – (xy + yz + xz)}

⇒ x3 + y3 + z3 = 3(216) + (19)(133 – 114)

⇒ x3 + y3 + z3 = 648 + 19(19)

⇒ x3 + y3 + z3 = 648 + 361

⇒ x3 + y3 + z3 = 1,009

x3+y3+z3+xyz\sqrt{x^3+y^3+z^3+xyz}

(1,009+216)⇒ \sqrt{(1,009 + 216)}

1225⇒ \sqrt{1225} = 35

∴ The correct answer is 35


Related Questions:

When each side of a square was reduced by 2 metres, the area became 49 square metres. What was the length of a side of the original square?
Find two consecutive odd positive integers, sum of whose squares is 290?

If (a + b + c) = 17, and (a2 + b2 + c2) = 101, find the value of (a - b)2 + (b - c)2 + (c - a)2.

If 2x + y = 6 and xy = 4, then find the value of 8x3 + y3 is:

If a + b + c = 6, a2+b2+c2=30a^2 + b^2 + c^2 = 30 and a3+b3+c3=165,a^3 + b^3 + c^3 = 165, then the value of 4abc is: