App Logo

No.1 PSC Learning App

1M+ Downloads

If a3+b3+c33abc=126,a^3 + b^3 + c^3 - 3abc = 126, a + b + c = 6, then the value of (ab + bc + ca) is:

A8

B7

C5

D9

Answer:

C. 5

Read Explanation:

Solution:

Given :

a3+b3+c33abc=126a^3+b^3+c^3-3abc=126 and  a + b + c = 6

Formula used :

a3+b3+c33abc=(a+b+c)[(a+b+c)23(ab+bc+ca)]a^3+b^3+c^3-3abc=(a+b+c)[(a+b+c)^2-3(ab+bc+ca)]

Calculations :

126 = 6 [(6)2 - 3(ab + bc + ca)] 

21 = 36 - 3(ab + bc + ca)

3(ab + bc + ca) = 15 

⇒ ab + bc + ca = 5 

∴ The value of ab + bc + ca is equal to 5


Related Questions:

If a+b=73a+b=\frac{7}{3} and a2+b2=319,a^2+b^2=\frac{31}{9}, find27(a3+b3)27(a^3+b^3)

If a + b + c = 7 and a3+b3+c33abc=175a^3 + b^3 + c^3-3abc = 175, then what is the value of (ab + bc + ca)?

If xy = 16 and x2 + y2 = 32, then the value of (x + y) is:

Find two consecutive odd positive integers, sum of whose squares is 290?
(x-y)=5 , x² -y² =55 ആയാൽ y യുടെ വില എന്ത്?