App Logo

No.1 PSC Learning App

1M+ Downloads

If x + y = 11, then (1)x+(1)y(-1)^x + (-1)^y is equal to _____

(where x, y are whole numbers).

A2

B1

C0

D-1

Answer:

C. 0

Read Explanation:

The value of (-1) raised to a power depends on whether the power is even or odd:

  • If the power is even, $(-1)^{even} = 1$

  • If the power is odd, $(-1)^{odd} = -1$

We know that x + y = 11, which is an odd number.

For the sum of two whole numbers to be odd, one of the numbers must be even, and the other must be odd.

Therefore, we have two possibilities:

  1. x is even, y is odd:

    • $(-1)^x = 1$

    • $(-1)^y = -1$

    • $(-1)^x + (-1)^y = 1 + (-1) = 0$

  2. x is odd, y is even:

    • $(-1)^x = -1$

    • $(-1)^y = 1$

    • $(-1)^x + (-1)^y = -1 + 1 = 0$

In both cases, the result is 0.

Therefore, $(-1)^x + (-1)^y = 0$.


Related Questions:

If x4+1x4=25716x^4+\frac{1}{x^4}=\frac{257}{16} then find 813(x3+1x3)\frac{8}{13}(x^3+\frac{1}{x^3}), where x>0.

രണ്ട് സംഖ്യകളിൽ ആദ്യത്തേത് രണ്ടാമത്തേതിന്റെ അഞ്ചിരട്ടിയാണ് . സംഖ്യകളുടെ തുക 96 ആയാൽ ചെറിയ സംഖ്യ ഏത്?

If x : y = 2 : 3 then the value of 3x+2y9x+5y\frac{3x+2y}{9x+5y} will be

A statement is given, followed by four conclusions given in the options. Find out which conclusion is true based on the given statement. Statement: H=W>F≥S≥T>Y
16/x = x/9 ആയാൽ 'x' ആകാവുന്നത്?