App Logo

No.1 PSC Learning App

1M+ Downloads

If x4+1x4=25716x^4+\frac{1}{x^4}=\frac{257}{16} then find 813(x3+1x3)\frac{8}{13}(x^3+\frac{1}{x^3}), where x>0.

A5

B8

C4

D6

Answer:

A. 5

Read Explanation:

Given:

x4+1x4=25716x^4 + \frac{1}{x^4} = \frac{257}{16}

Formula:

(x+1x)2=x2+1x2+2(x+\frac{1}{x})^2=x^2+\frac{1}{x^2}+2

(x3+1x3)=(x+1x)33(x+1x)(x^3+\frac{1}{x^3})=(x+\frac{1}{x})^3-3(x+\frac{1}{x})

Calculation:

(x2+1x2)2=x4+1x4+2(x^2+\frac{1}{x^2})^2=x^4+\frac{1}{x^4}+2

(x2+1x2)2=(25716)+2(x^2+\frac{1}{x^2})^2=(\frac{257}{16})+2

(x2+1x2)2=(257+32)16(x^2+\frac{1}{x^2})^2=\frac{(257+32)}{16}

(x2+1x2)=(28916)(x^2+\frac{1}{x^2})=\sqrt(\frac{289}{16})

(x2+1x2)=174(x^2+\frac{1}{x^2})=\frac{17}{4}

Again,

(x+1x)2=x2+1x2+2(x+\frac{1}{x})^2=x^2+\frac{1}{x^2}+2

(x+1x)2=(174)+2(x+\frac{1}{x})^2=(\frac{17}{4})+2

 

(x+1x)2=(17+8)4(x+\frac{1}{x})^2=\frac{(17+8)}{4}

(x+1x)=254(x+\frac{1}{x})=\sqrt{\frac{25}{4}}

(x+1x)=52(x+\frac{1}{x})=\frac{5}{2}

(x3+1x3)=(x+1x)33(x+1x)(x^3+\frac{1}{x^3})=(x+\frac{1}{x})^3-3(x+\frac{1}{x})

(x3+1x3)=(52)33×(52)(x^3+\frac{1}{x^3})=(\frac{5}{2})^3-3\times{(\frac{5}{2})}

(x31x3)=(1258)(152)(x^3\frac{1}{x^3})=(\frac{125}{8})-(\frac{15}{2})

(x3+1x3)=(12560)8(x^3+\frac{1}{x^3})=\frac{(125-60)}{8}

(x3+1x3)=658×(813)(x^3+\frac{1}{x^3})=\frac{65}{8}\times(\frac{8}{13})

813×(x3+1x3)=5\frac{8}{13}\times(x^3+\frac{1}{x^3})=5

The required value is 5.

Shortcut Trick

If x2+1x2=ax^2+\frac{1}{x^2}=a , then x+1x=(a+2)x+\frac{1}{x}=\sqrt{(a+2)}

So,  if  (x2)2+1(x2)2=25716(x^2)^2+\frac{1}{(x^2)^2}=\frac{257}{16}, then x2+1x2=25716+2=174x^2+\frac{1}{x^2}=\sqrt{\frac{257}{16}+2}=\frac{17}{4}

Again, x2+1x2=174x^2+\frac{1}{x^2}=\frac{17}{4} , then x+1x=174+2=52x+\frac{1}{x}=\sqrt{\frac{17}{4}+2}=\frac{5}{2} 

Now, (x3+1x3=(x+1x)33(x+1x)(x^3+\frac{1}{x^3}=(x+\frac{1}{x})^3-3(x+\frac{1}{x})

(52)33×(52)=(658)\frac({5}{2})^3-3\times(\frac{5}{2})=(\frac{65}{8})

∴  (813)×(x3+1x3)=(658)×(813)=5(\frac{8}{13})\times(x^3+\frac{1}{x^3})=(\frac{65}{8})\times(\frac{8}{13})=5


Related Questions:

If 3/11 < x/3 < 7/11, which of the following values can 'x' take?
If b² - 4ac < 0 then the roots of the quadratic equation are _____

If (4y4y)=11(4y-\frac{4}{y})=11 , find the value of (y2+1y2)(y^2+\frac{1}{y^2}) .

x - y = 4, x² + y² =10 ആയാൽ x + y എത്ര?

A=x1x+1A=\frac{x-1}{x+1}, then the value of A1AA-\frac{1}{A} is: