App Logo

No.1 PSC Learning App

1M+ Downloads

If x + y + z = 10, x3+y3+z3=75x^3 + y^3 + z^3 = 75 and xyz = 15, then find the value of x2+y2+z2xyyzzxx^2 + y^2 + z^2-xy-yz-zx

A3

B5

C6

D4

Answer:

A. 3

Read Explanation:

Solution:

Given:

x + y + z = 10, (x3 + y3 + z3) = 75 and xyz = 15

Formula:

(x3 + y3 + z3 - 3xyz) = (x + y + z) (x2 + y2 + z2 - xy - yz - zx)

Calculation:

According to the given formula

(x3 + y3 + z3 - 3xyz) = (x + y + z) (x2 + y2 + z2 - xy - yz - zx)

⇒ 75 - 3 ×\times 15 = 10 ×\times (x2 + y2 + z2 - xy - yz - zx)

⇒ 75 - 45 = 10 ×\times (x2 + y2 + z2 - xy - yz - zx)

⇒ (x2 + y2 + z2 - xy - yz - zx) = 3010\frac{30}{10} 

∴ x2 + y2 + z2 - xy - yz - zx = 3

Hence option(A) is correct answer.


Related Questions:

(3x - 6)/x - (4y -6)/y + (6z + 6)/z = 0 ആയാൽ (1/x - 1/y - 1/z) എത്രയാണ്?
If b² - 4ac < 0 then the roots of the quadratic equation are _____
If (a+1/a3)2=25(a+1/a-3)^2=25then find a2+1/a2a^2+1/a^2
P(x)= x²+ax+b and P(-m)-P(-n)-0. Then (m+1) (n+1) is:
8 രൂപ കൂടി കിട്ടിയാൽ രാജുവിന് 100 രൂപ തികയ്ക്കാമായിരുന്നു. എങ്കിൽ രാജ്യവിൻ്റെ കൈയ്യിൽ എത്ര രൂപയുണ്ട്?