App Logo

No.1 PSC Learning App

1M+ Downloads

What is the Value of cos(50+A)sin(40A)cos40sec40\frac{\cos(50^\circ +A)-\sin(40^\circ -A)}{\cos40^\circ \sec40^\circ}

A0.5

B1

C2

D0

Answer:

D. 0

Read Explanation:

Solution:

Given:

cos(50+A)sin(40A)cos40sec40\frac{\cos(50^\circ +A)-\sin(40^\circ -A)}{\cos40^\circ \sec40^\circ}

Calculation:

cos(50+A)sin(40A)cos40sec40\frac{\cos(50^\circ +A)-\sin(40^\circ -A)}{\cos40^\circ \sec40^\circ}

sin(90(50+A))sin(40A)cos40sec40\frac{\sin(90 - (50^\circ +A))-\sin(40^\circ -A)}{\cos40^\circ \sec40^\circ}

sin(40A)sin(40A)cos40sec40\frac{\sin(40^\circ-A)-\sin(40^\circ -A)}{\cos40^\circ \sec40^\circ}

⇒ 0

∴ The required answer is 0.

$


Related Questions:

image.png

Cos1o.cos2o.cos3o.......................cos100o is equal to

If sec 44 cosec (3A-50°), where 44 and 34 are acute angles, find the value of A + 75.

Convert Degree to Radian: 30

Evaluate sin54cos36+sec46cosec44\frac{\sin 54^{\circ}}{\cos 36^{\circ}}+\frac{\sec 46^{\circ}}{\operatorname{cosec} 44^{\circ}}