App Logo

No.1 PSC Learning App

1M+ Downloads
The sides of two similar triangles are in the ratio 9 ∶ 4. Areas of these triangles are in the ratio

A16 ∶ 81

B81 ∶ 16

C9 ∶ 4

D4 ∶ 9

Answer:

B. 81 ∶ 16

Read Explanation:

Solution: Given: The sides of two similar triangles are in the ratio 9 : 4. Concept used: When two triangles are similar, the ratio of their areas is equal to the square of the ratio of their corresponding sides. Calculation: Let the ratio of the areas of these triangles be A1 : A2. ⇒ A1 : A2 = 92 : 42 ⇒ A1 : A2 = 81 : 16 ∴ The ratio of the areas of these similar triangles is 81 : 16.


Related Questions:

70 മീറ്റർ നീളവും 15 മീറ്റർ വീതിയുമുള്ള ഒരു സ്റ്റേഡിയത്തിന്റെ ചുറ്റളവ് എത്ര?
ഒരു സമപാർശ്വ ത്രികോണമായ ABCയിൽ, AB = AC = 26 cm ഉം BC = 20 cm ഉം ആണെങ്കിൽ, ABC ത്രികോണത്തിന്റെ വിസ്തീർണ്ണം കണ്ടെത്തുക.
Find the cost of fencing of a rectangular land, if it has an area of 100 m² and one side of length 20 m at a rate of 30 per meter.
A cuboidal block, 12 cm by 24 cm by 30 cm, is cut up into an exact number of identical cubes. The least possible number of such cubes is:
A cylinder of radius 6 centimetres and height 18 centimetres is melted and recast into spheres of radius 3 centimetres. The number of spheres made from the cylinder is: