A3/2
B5/2
C7/2
D9/2
Answer:
.
Related Questions:
If a is positive and a2+1a2=7a^2+\frac{1}{a^2}=7a2+a21=7, thenfind a3+1a3a^3+\frac{1}{a^3}a3+a31.
If x=3−1x =\sqrt{3} - 1x=3−1 and y=3+1y =\sqrt{3}+1y=3+1 then (x4−y4)(x+y)2\frac{(x^4-y^4)}{(x+y)^2}(x+y)2(x4−y4) is equal to ?
If (4y−4y)=11(4y-\frac{4}{y})=11(4y−y4)=11 , find the value of (y2+1y2)(y^2+\frac{1}{y^2}) (y2+y21).