App Logo

No.1 PSC Learning App

1M+ Downloads

If x+12x=3x+\frac{1}{2x}=3, find the value of 8x3+1x38x^3+\frac{1}{x^3}.

A186

B180

C164

D160

Answer:

B. 180

Read Explanation:

Solution:

Given:

x+12x=3x+\frac{1}{2x}=3

Formula used:

If ax+b(1x)=kax+b(\frac{1}{x})=k

On cubing both side we get

(ax)3 + (b/x)3 = k3 - 3kab

Calculation:

Multiply x+12x=3,x+\frac{1}{2x}=3, by 2 on both side

2(x+12x)=3×22(x + \frac{1}{2x}) = 3\times{2}

2x+1x=62x + \frac{1}{x} = 6

On cubing both side we get

(2x+1x)3=63(2x + \frac{1}{x})^3 = 6^3

8x3+1x3=2163×6×28x^3+\frac{1}{x^3}=216-3\times{6}\times{2}

8x3+1x3=216368x^3+\frac{1}{x^3}=216-36

8x3+1x3=180 8x^3+\frac{1}{x^3}=180

∴ The value of 8x3+1x38x^3+\frac{1}{x^3} is 180.


Related Questions:

If 4a+15a=44a+\frac{1}{5a}=4 , then the value of 25a2+116a225a^2+\frac{1}{16a^2} is:

If a + b = 10 and 37\frac{3}{7} of ab = 9, then the value of a3 + b3 is:

16/x = x/9 ആയാൽ 'x' ആകാവുന്നത്?
When each side of a square was reduced by 2 metres, the area became 49 square metres. What was the length of a side of the original square?

If (4y4y)=11(4y-\frac{4}{y})=11 , find the value of (y2+1y2)(y^2+\frac{1}{y^2}) .